Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.04.22280704

ABSTRACT

The emergence of the SARS-CoV-2 Omicron sublineages resulted in drastically increased transmission rates and reduced protection from vaccine-induced immunity. To counteract these effects, multiple booster strategies were used in different countries, although data comparing their efficiency in improving protective immunity remains sparse, especially among vulnerable populations, including older adults. The inactivated CoronaVac vaccine was among the most widely distributed worldwide, particularly in China, and South America. However, whether homologous versus heterologous booster doses in those fully vaccinated with CoronaVac induce distinct humoral responses and whether these responses vary across age groups remain unknown. We analyzed plasma antibody responses from CoronaVac-vaccinated younger or older individuals in central and south America that received a homologous CoronaVac or heterologous BNT162b2 or ChAdOx1 booster vaccines. We found that both IgG levels against SARS-CoV-2 spike or RBD, as well as neutralization titers against Omicron sublineages, were substantially reduced in participants that received homologous CoronaVac when compared to heterologous BNT162b2 or ChAdOx1 booster. This effect was specifically prominent in recipients older than 50 years of age. In this group, CoronaVac booster induced low virus-specific IgG levels and failed to elevate their neutralization titers against any omicron sublineage. Our results point to significant inefficiency in mounting protective anti-viral humoral immunity in those who were primed with CoronaVac followed by CoronaVac booster, particularly among older adults, urging a heterologous regimen in high-risk populations fully vaccinated with CoronaVac. One Sentence SummaryHomologous CoronaVac boosters do not improve neutralization responses against current VOCs in older adults in contrast to heterologous regimens.


Subject(s)
Severe Acute Respiratory Syndrome
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.25.22278443

ABSTRACT

Background: The decline in COVID-19 mRNA vaccine effectiveness (VE) is well established, however the impact of variant-specific immune evasion and waning protection remains unclear. Here, we use whole-genome-sequencing (WGS) to tease apart the contribution of these factors on the decline observed following the introduction of the Delta variant. Further, we evaluate the utility of calendar-period-based variant classification as an alternative to WGS. Methods: We conducted a test-negative-case-control study among people who received SARS-CoV-2 RT-PCR testing in the Yale New Haven Health System between April 1 and August 24, 2021. Variant classification was performed using WGS and secondarily by calendar-period. We estimated VE as one minus the ratio comparing the odds of infection among vaccinated and unvaccinated people. Results: Overall, 2,029 cases (RT-PCR positive, sequenced samples) and 343,985 controls (negative RT-PCRs) were included. VE 14-89 days after 2nd dose was significantly higher against WGS-classified Alpha infection (84.4%, 95% confidence interval: 75.6-90.0%) than Delta infection (68.9%, CI: 58.0-77.1%, p-value: 0.013). The odds of WGS-classified Delta infection were significantly higher 90-149 than 14-89 days after 2nd dose (Odds ratio: 1.6, CI: 1.2-2.3). While estimates of VE against calendar-period-classified infections approximated estimates against WGS-classified infections, calendar-period-based classification was subject to outcome misclassification (35% during Alpha period, 4% during Delta period). Conclusions: These findings suggest that both waning protection and variant-specific immune evasion contributed to the lower effectiveness. While estimates of VE against calendar-period-classified infections mirrored that against WGS-classified infections, our analysis highlights the need for WGS when variants are co-circulating and misclassification is likely.


Subject(s)
COVID-19 , Genomic Instability , Hepatitis D
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.19.22275339

ABSTRACT

Objective: To assess the Connecticut Department of Corrections (DOC) COVID-19 vaccine program within jails. Methods: We conducted a retrospective cohort analysis among people who were incarcerated in a DOC-operated jail between February 2 and November 8, 2021, and were eligible for vaccination at the time of incarceration (intake). We compared the vaccination rates before and after incarceration using an age-adjusted survival analysis with a time-varying exposure of incarceration and an outcome of vaccination. Results: During the study period, 3,716 people spent at least 1 night in jail and were eligible for vaccination at intake. Of these residents, 136 were vaccinated prior to incarceration, 2,265 had a recorded vaccine offer, and 476 were vaccinated while incarcerated. The age-adjusted hazard of vaccination following incarceration was significantly higher than prior to incarceration (12.5; 95% CI: 10.2-15.3). Conclusions: We found that residents were more likely to become vaccinated in jail than the community. Though these findings highlight the utility of vaccination programs within jails, the low level of vaccination in this population speaks to the need for additional program development within jails and the community.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.19.22274056

ABSTRACT

Importance: The benefit of primary and booster vaccination in people who experienced prior SARS-CoV-2 infection remains unclear. Objective: To estimate the effectiveness of a primary (two-dose) and booster (third dose) vaccination against Omicron infection among previously infection people. Design: Test-negative case-control study. Setting: Yale New Haven Health System facilities serving southern Connecticut communities. Participants: Vaccine eligible people who received SARS-CoV-2 RT-PCR testing between November 1, 2021, and January 31, 2022. Exposure: COVID-19 mRNA primary and booster vaccination. Main Outcomes and Measures: We conducted two analyses, each with an outcome of Omicron BA.1 variant infection (S-gene target failure defined) and each stratified by prior SARS-CoV-2 infection status. We estimated the effectiveness of primary vaccination during the period before and during booster eligibility (14-149 and [≥]150 days, respectively, after 2nd dose) and of booster vaccination ([≥]14 days after booster dose). To test whether booster vaccination reduced the risk of infection beyond that of the primary series, we compared the odds among boosted and booster eligible people. Results: Overall, 10,676 cases and 119,397 controls were included (median age: cases: 35 years, controls: 39 years). Among cases and controls, 6.1% and 7.8% had a prior infection. The effectiveness of primary vaccination 14-149 days after 2nd dose was 36.1% (95% CI, 7.1-56.1%) and 28.5% (95% CI, 20.0-36.2%) for people with and without prior infection, respectively. The effectiveness of booster vaccination was 45.8% (95% CI, 20.0-63.2%) and 56.9% (95% CI, 52.1-61.2%) in people with and without prior infection, respectively. The odds ratio comparing boosted and booster eligible people with prior infection was 0.83 (95% CI, 0.56-1.23), whereas the odds ratio comparing boosted and booster eligible people without prior infection was 0.51 (95% CI, 0.46-0.56). Conclusions and Relevance: Primary vaccination provided significant but limited protection against Omicron BA.1 infection among people with and without prior infection. While booster vaccination was associated with additional protection in people without prior infection, it was not associated with additional protection among people with prior infection. These findings support primary vaccination in people regardless of prior infection status but suggest that infection history should be considered when evaluating the need for booster vaccination.


Subject(s)
COVID-19 , Hallucinations , Infections
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.30.22273193

ABSTRACT

The effectiveness of inactivated vaccines (VE) against symptomatic and severe COVID-19 caused by omicron is unknown. We conducted a nationwide, test-negative, case-control study to estimate VE for homologous and heterologous (BNT162b2) booster doses in adults who received two doses of CoronaVac in Brazil in the Omicron context. Analyzing 1,386,544 matched-pairs, VE against symptomatic disease was 8.6% (95% CI, 5.6-11.5) and 56.8% (95% CI, 56.3-57.3) in the period 8-59 days after receiving a homologous and heterologous booster, respectively. During the same interval, VE against severe Covid-19 was 73.6% (95% CI, 63.9-80.7) and 86.0% (95% CI, 84.5-87.4) after receiving a homologous and heterologous booster, respectively. Waning against severe Covid-19 after 120 days was only observed after a homologous booster. Heterologous booster might be preferable to individuals with completed primary series inactivated vaccine.


Subject(s)
COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273077

ABSTRACT

SARS-CoV-2 Variants of Concern (VOCs) continue to reshape the trajectory of the COVID-19 pandemic. However, why some VOCs, like Omicron, become globally dominant while the spread of others is limited is not fully understood. To address this question, we investigated the VOC Mu, which was first identified in Colombia in late 2020. Our study demonstrates that, although Mu is less sensitive to neutralization compared to variants that preceded it, it did not spread significantly outside of South and Central America. Additionally, we find evidence that the response to Mu was impeded by reporting delays and gaps in the global genomic surveillance system. Our findings suggest that immune evasion alone was not sufficient to outcompete highly transmissible variants that were circulating concurrently with Mu. Insights into the complex relationship between genomic and epidemiological characteristics of previous variants should inform our response to variants that are likely to emerge in the future.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.27.21268459

ABSTRACT

The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and by its numerous spike mutations with potential to evade neutralizing antibodies elicited by COVID-19 vaccines. The Dominican Republic was among the first countries in recommending the administration of a third dose COVID-19 vaccine to address potential waning immunity and reduced effectiveness against variants. Here, we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants that had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that heterologous CoronaVac prime followed by BNT162b2 booster regimen induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and Delta variant, resembling the titers obtained after two doses of mRNA vaccines. While neutralization of Omicron was undetectable in participants that had received a two-dose regimen of CoronaVac vaccine, BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron, compared to two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 6.3-fold and 2.7-fold for Omicron compared to ancestral and Delta variant, respectively. Surprisingly, previous SARS-CoV-2 infection did not affect the neutralizing titers for Omicron in participants that received the heterologous regimen. Our findings have immediate implications for multiples countries that previously used a two-dose regimen of CoronaVac and reinforce the notion that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.07.471539

ABSTRACT

The impact of coronavirus disease 2019 (COVID-19) mRNA vaccination on pregnancy and fertility has become a major topic of public interest. We investigated two of the most widely propagated claims to determine 1) whether COVID-19 mRNA vaccination of mice during early pregnancy is associated with an increased incidence of birth defects or growth abnormalities, and 2) whether COVID-19 mRNA-vaccinated human volunteers exhibit elevated levels of antibodies to the human placental protein syncytin-1. Using a mouse model, we found that intramuscular COVID-19 mRNA vaccination during early pregnancy at gestational age E7.5 did not lead to differences in fetal size by crown-rump length or weight at term, nor did we observe any gross birth defects. In contrast, injection of the TLR3 agonist and double-stranded RNA mimic polyinosinic-polycytidylic acid, or poly(I:C), impacted growth in utero leading to reduced fetal size. No overt maternal illness following either vaccination or poly(I:C) exposure was observed. We also found that term fetuses from vaccinated murine pregnancies exhibit high circulating levels of anti-Spike and anti-RBD antibodies to SARS-CoV-2 consistent with maternal antibody status, indicating transplacental transfer. Finally, we did not detect increased levels of circulating anti-syncytin-1 antibodies in a cohort of COVID-19 vaccinated adults compared to unvaccinated adults by ELISA. Our findings contradict popular claims associating COVID-19 mRNA vaccination with infertility and adverse neonatal outcomes.


Subject(s)
Growth Disorders , Infertility, Female , COVID-19 , Fetal Diseases , Abnormalities, Drug-Induced
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-726620.v1

ABSTRACT

The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.


Subject(s)
COVID-19 , Bacteremia
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260802

ABSTRACT

BackgroundA two-dose regimen of ChAdOx1 coronavirus disease 19 (Covid-19) vaccine with an inter-dose interval of three months has been implemented in many countries with restricted vaccine supply. However, there is limited evidence for the effectiveness of ChAdOx1 by dose in elderly populations in countries with high prevalence of the Gamma variant of severe acute respiratory syndrome 2 (SARS-CoV-2). MethodsWe conducted a test-negative case-control study to estimate the effectiveness of ChAdOx1 vaccine in adults aged 60 years or older during a Gamma-variant-associated epidemic in Sao Paulo state, Brazil, between 17 January and 2 July 2021. Cases and matched test-negative controls were individuals, identified from surveillance databases, who experienced an acute respiratory illness and underwent SARS-CoV-2 RT-PCR testing. We used conditional logistic regression to estimate the effectiveness by dose against RT-PCR-confirmed Covid-19, Covid-19 hospitalization, and Covid-19-related death. Results61,164 individuals were selected into matched case-control pairs. Starting [≥]28 days after the first dose, adjusted effectiveness of a single dose of ChAdOx1 was 33.4% (95% CI, 26.4 to 39.7) against Covid-19, 55.1% (95% CI, 46.6 to 62.2) against hospitalization, and 61.8% (95% CI, 48.9 to 71.4) against death. Starting [≥]14 days after the second dose, the adjusted effectiveness of the two-dose schedule was 77.9% (95% CI, 69.2 to 84.2) against Covid-19, 87.6% (95% CI, 78.2 to 92.9) against hospitalization, and 93.6% (95% CI, 81.9 to 97.7) against death. ConclusionsCompletion of the ChAdOx1 vaccine schedule afforded significantly increased protection over a single dose against mild and severe Covid-19 outcomes in elderly individuals during widespread Gamma variant transmission.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260307

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in major neutralizing antibody-binding sites can affect humoral immunity induced by infection or vaccination (1-6). We analysed the development of anti-SARS-CoV-2 antibody and T cell responses in previously infected (recovered) or uninfected (naive) individuals that received mRNA vaccines to SARS-CoV-2. While previously infected individuals sustained higher antibody titers than uninfected individuals post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain than previously infected individuals 7 days after the second vaccine dose. T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination in the time-points analysed. Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (e.g., B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (e.g., B.1.617.2) or with E484K (without N501Y/T). While both groups retained neutralization capacity against all variants, plasma from previously infected vaccinated individuals displayed overall better neutralization capacity when compared to plasma from uninfected individuals that also received two vaccine doses, pointing to vaccine boosters as a relevant future strategy to alleviate the impact of emerging variants on antibody neutralizing activity.

12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259415

ABSTRACT

Post-authorization observational studies play a key role in understanding COVID-19 vaccine effectiveness following the demonstration of efficacy in clinical trials. While bias due to confounding, selection bias, and misclassification can be mitigated through careful study design, unmeasured confounding is likely to remain in these observational studies. Phase III trials of COVID-19 vaccines have shown that protection from vaccination does not occur immediately, meaning that COVID-19 risk should be similar in recently vaccinated and unvaccinated individuals, in the absence of confounding or other bias. Several studies have used the estimated effectiveness among recently vaccinated individuals as a negative control exposure to detect bias in vaccine effectiveness estimates. In this paper we introduce a theoretical framework to describe the interpretation of such a bias-indicator in test-negative studies, and outline assumptions that would allow the use of recently vaccinated individuals to correct bias due to unmeasured confounding.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.19.21257472

ABSTRACT

ObjectiveTo estimate the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19 in the elderly population of Sao Paulo State, Brazil during widespread circulation of the Gamma variant. DesignTest negative case-control study. SettingHealth-care facilities in Sao Paulo State, Brazil. Participants43,774 adults aged 70 years or older who were residents of Sao Paulo State and underwent SARS-CoV-2 RT-PCR testing from January 17 to April 29, 2021. 26,433 cases with symptomatic COVID-19 and 17,622 symptomatic, test negative controls were selected into 7,950 matched pairs, according to age, sex, self-reported race, municipality of residence, prior COVID-19 status and date of RT-PCR testing. InterventionVaccination with a two-dose regimen of CoronaVac. Main outcome measuresRT-PCR confirmed symptomatic COVID-19 and COVID-19 associated hospitalizations and deaths. ResultsAdjusted vaccine effectiveness against symptomatic COVID-19 was 18.2% (95% CI, 0.0 to 33.2) in the period 0-13 days after the second dose and 41.6% (95% CI, 26.9 to 53.3) in the period [≥]14 days after the second dose. Adjusted vaccine effectiveness against hospitalisations was 59.0% (95% CI, 44.2 to 69.8) and against deaths was 71.4% (95% CI, 53.7 to 82.3) in the period [≥]14 days after the second dose. Vaccine effectiveness [≥]14 days after the second dose declined with increasing age for the three outcomes, and among individuals aged 70-74 years it was 61.8% (95% CI, 34.8 to 77.7) against symptomatic disease, 80.1% (95% CI, 55.7 to 91.0) against hospitalisations and 86.0% (95% CI, 50.4 to 96.1) against deaths. ConclusionsVaccination with CoronaVac was associated with a reduction in symptomatic COVID-19, hospitalisations and deaths in adults aged 70 years or older in a setting with extensive Gamma variant transmission. However, significant protection was not observed until completion of the two-dose regimen, and vaccine effectiveness declined with increasing age amongst this elderly population. Summary boxesO_ST_ABSWhat is already known on this topicC_ST_ABSRandomised controlled trials (RCT) have yielded varying estimates (51 to 84%) for the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19. Current evidence is limited on whether CoronaVac is effective against severe disease or death caused by the SARS-CoV-2 variant of concern, Gamma, or in the setting of extensive Gamma variant circulation. More evidence is needed for the real-world effectiveness of CoronaVac and other inactivated vaccines among elderly individuals, a population that was underrepresented in RCTs of these vaccines. What this study addsA two-dose regimen of CoronaVac provides significant protection against symptomatic COVID-19, hospitalisations and deaths among adults [≥]70 years of age in the setting of widespread Gamma variant transmission. Significant protection did not occur until [≥]14 days after administration of the second dose of CoronaVac. The effectiveness of CoronaVac declines with increasing age in the elderly population.


Subject(s)
COVID-19
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.27.21256140

ABSTRACT

We assessed the relationship between municipality COVID-19 case rates and SARS-CoV-2 concentrations in the primary sludge of corresponding wastewater treatment facilities. Over 1,000 daily primary sludge samples were collected from six wastewater treatment facilities with catchments serving 18 cities and towns in the State of Connecticut, USA. Samples were analyzed for SARS-CoV-2 RNA concentrations during a six-month time period that overlapped with fall 2020 and winter 2021 COVID-19 outbreaks in each municipality. We fit a single regression model to estimate reported case rates in the six municipalities from SARS-CoV-2 RNA concentrations collected daily from corresponding wastewater treatment facilities. Results demonstrate the ability of SARS-CoV-2 RNA concentrations in primary sludge to estimate COVID-19 reported case rates across treatment facilities and wastewater catchments, with coverage probabilities ranging from 0.94 to 0.96. Leave-one-out cross validation suggests that the model can be broadly applied to wastewater catchments that range in more than one order of magnitude in population served. Estimation of case rates from wastewater data can be useful in locations with limited testing availability or testing disparities, or delays in individual COVID-19 testing programs.


Subject(s)
COVID-19
15.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-405958.v1

ABSTRACT

The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal-transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection 7 months after primary infection. To elucidate the immunological mechanisms responsible for reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses that was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we identified the development of neutralizing antibodies and humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation.


Subject(s)
COVID-19
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.07.21255081

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Gamma, emerged in the city of Manaus in late 2020 during a large resurgence of coronavirus disease (COVID-19), and has spread throughout Brazil. The effectiveness of vaccines in settings with widespread Gamma variant transmission has not been reported. Methods We performed a matched test-negative case-control study to estimate the effectiveness of an inactivated vaccine, CoronaVac, in healthcare workers (HCWs) in Manaus, where the Gamma variant accounted for 86% of genotyped SARS-CoV-2 samples at the peak of its epidemic. We performed an early analysis of effectiveness following administration of at least one vaccine dose and an analysis of effectiveness of the two-dose schedule. The primary outcome was symptomatic SARS-CoV-2 infection. Findings For the early at-least-one-dose and two-dose analyses the study population was, respectively, 53,176 and 53,153 HCWs residing in Manaus and aged 18 years or older, with complete information on age, residence, and vaccination status. Among 53,153 HCWs eligible for the two-dose analysis, 47,170 (89%) received at least one dose of CoronaVac and 2,656 individuals (5%) underwent RT-PCR testing from 19 January, 2021 to 13 April, 2021. Of 3,195 RT-PCR tests, 885 (28%) were positive. 393 and 418 case- control pairs were selected for the early and two-dose analyses, respectively, matched on calendar time, age, and neighbourhood. Among those who had received both vaccine doses before the RT-PCR sample collection date, the average time from second dose to sample collection date was 14 days (IQR 7-24). In the early analysis, vaccination with at least one dose was associated with a 0.50-fold reduction (adjusted vaccine effectiveness (VE), 49.6%, 95% CI 11.3 to 71.4) in the odds of symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the first dose. However, we estimated low effectiveness (adjusted VE 36.8%, 95% CI -54.9 to 74.2) of the two-dose schedule against symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the second dose. A finding that vaccinated individuals were much more likely to be infected than unvaccinated individuals in the period 0-13 days after first dose (aOR 2.11, 95% CI 1.36-3.27) suggests that unmeasured confounding led to downward bias in the vaccine effectiveness estimate. Interpretation Evidence from this test-negative study of the effectiveness of CoronaVac was mixed, and likely affected by bias in this setting. Administration of at least one vaccine dose showed effectiveness against symptomatic SARS-CoV-2 infection in the setting of epidemic Gamma variant transmission. However, the low estimated effectiveness of the two-dose schedule underscores the need to maintain non-pharmaceutical interventions while vaccination campaigns with CoronaVac are being implemented. Funding Fundação Oswaldo Cruz (Fiocruz); Municipal Health Secretary of Manaus Research in Context Evidence before this study We searched PubMed for articles published from inception of the pandemic until April 3, 2021, with no language restrictions, using the search terms “P.1” AND “vaccine” AND “SARS-CoV-2”. Additionally, we searched for “CoronaVac” AND “SARS-CoV-2”. Early studies have found plasma from convalescent COVID-19 patients and sera from vaccinated individuals have reduced neutralisation of the SARS-CoV-2 variant, Gamma or P.1, compared with strains isolated earlier in the pandemic. Pfizer BNT162b2 mRNA, Oxford-AstraZeneca ChAdOx1, and CoronaVac are the only vaccines for which such data has been published to date. No studies reported effectiveness of any vaccine on reducing the risk of infection or disease among individuals exposed to P.1 or in settings of high P.1 transmission. Added value of this study This study finds that vaccination with CoronaVac was 49.4% (95% CI 13.2 to 71.9) effective at preventing COVID-19 in a setting with likely high prevalence of the Gamma Variant of Concern. However, an analysis of effectiveness by dose was underpowered and failed to find significant effectiveness of the two-dose schedule of CoronaVac (estimated VE 37.1%, 95% CI -53.3 to 74.2). Implications of all the available evidence These findings are suggestive for the effectiveness of CoronaVac in healthcare workers in the setting of widespread P.1 transmission but must be strengthened by observational studies in other settings and populations. Based on this evidence, there is a need to implement sustained non-pharmaceutical interventions even as vaccination campaigns continue.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.16.21253770

ABSTRACT

ABSTRACT Objective Real-world data have been critical for rapid-knowledge generation throughout the COVID-19 pandemic. To ensure high-quality results are delivered to guide clinical decision making and the public health response, as well as characterize the response to interventions, it is essential to establish the accuracy of COVID-19 case definitions derived from administrative data to identify infections and hospitalizations. Methods Electronic Health Record (EHR) data were obtained from the clinical data warehouse of the Yale New Haven Health System (Yale, primary site) and 3 hospital systems of the Mayo Clinic (validation site). Detailed characteristics on demographics, diagnoses, and laboratory results were obtained for all patients with either a positive SARS-CoV-2 PCR or antigen test or ICD-10 diagnosis of COVID-19 (U07.1) between April 1, 2020 and March 1, 2021. Various computable phenotype definitions were evaluated for their accuracy to identify SARS-CoV-2 infection and COVID-19 hospitalizations. Results Of the 69,423 individuals with either a diagnosis code or a laboratory diagnosis of a SARS-CoV-2 infection at Yale, 61,023 had a principal or a secondary diagnosis code for COVID-19 and 50,355 had a positive SARS-CoV-2 test. Among those with a positive laboratory test, 38,506 (76.5%) and 3449 (6.8%) had a principal and secondary diagnosis code of COVID-19, respectively, while 8400 (16.7%) had no COVID-19 diagnosis. Moreover, of the 61,023 patients with a COVID-19 diagnosis code, 19,068 (31.2%) did not have a positive laboratory test for SARS-CoV-2 in the EHR. Of the 20 cases randomly sampled from this latter group for manual review, all had a COVID-19 diagnosis code related to asymptomatic testing with negative subsequent test results. The positive predictive value (precision) and sensitivity (recall) of a COVID-19 diagnosis in the medical record for a documented positive SARS-CoV-2 test were 68.8% and 83.3%, respectively. Among 5,109 patients who were hospitalized with a principal diagnosis of COVID-19, 4843 (94.8%) had a positive SARS-CoV-2 test within the 2 weeks preceding hospital admission or during hospitalization. In addition, 789 hospitalizations had a secondary diagnosis of COVID-19, of which 446 (56.5%) had a principal diagnosis consistent with severe clinical manifestation of COVID-19 (e.g., sepsis or respiratory failure). Compared with the cohort that had a principal diagnosis of COVID-19, those with a secondary diagnosis had a more than 2-fold higher in-hospital mortality rate (13.2% vs 28.0%, P<0.001). In the validation sample at Mayo Clinic, diagnosis codes more consistently identified SARS-CoV-2 infection (precision of 95%) but had lower recall (63.5%) with substantial variation across the 3 Mayo Clinic sites. Similar to Yale, diagnosis codes consistently identified COVID-19 hospitalizations at Mayo, with hospitalizations defined by secondary diagnosis code with 2-fold higher in-hospital mortality compared to those with a primary diagnosis of COVID-19. Conclusions COVID-19 diagnosis codes misclassified the SARS-CoV-2 infection status of many people, with implications for clinical research and epidemiological surveillance. Moreover, the codes had different performance across two academic health systems and identified groups with different risks of mortality. Real-world data from the EHR can be used to in conjunction with diagnosis codes to improve the identification of people infected with SARS-CoV-2.


Subject(s)
COVID-19 , Respiratory Insufficiency
18.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-311045.v1

ABSTRACT

The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a coarse graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16-hi,CD66b-lo neutrophil and IFNγ+,GranzymeB+ Th17 cell responses enriched in patients who die. Furthermore, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.


Subject(s)
COVID-19
19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.04.21249236

ABSTRACT

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load, as measured by saliva but not nasopharyngeal, is a dynamic unifying correlate of disease presentation, severity, and mortality over time.


Subject(s)
COVID-19
20.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.04.425128

ABSTRACT

Soluble ACE2 (sACE2) decoy receptors are promising agents to inhibit SARS-CoV-2 as they are not affected by common escape mutations in viral proteins. However, their success may be limited by their relatively poor potency. To address these challenges, we developed a highly active multimeric sACE2 decoy receptor via a SunTag system that could neutralize both pseudoviruses bearing SARS-CoV-2 spike protein and SARS-CoV-2 clinical isolates. This fusion protein demonstrated a neutralization efficiency nearly 250-fold greater than monomeric sACE2. SunTag in combination with a more potent version of sACE2 achieved near complete neutralization at a sub-nanomolar range, which is comparable with clinical monoclonal antibodies. We demonstrate that this activity is due to greater occupancy of the multimeric decoy receptors on Spike protein as compared to monomeric sACE2. Overall, these highly potent multimeric sACE2 decoy receptors offer a promising treatment approach against SARS-CoV-2 infections including its novel variants.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL